- Что такое теплопроводность
- Коэффициент теплопроводности
- Таблица теплопроводности материалов
- Таблица теплопроводности теплоизоляционных материалов
- Коэффициент теплопроводности для металлов и неметаллических твердых материалов
- Таблица теплопроводности дерева
- От чего зависит теплопроводность?
- Влияние влаги на теплопроводность стройматериала
- Стройматериалы с минимальным КТП
- Применение показателя теплопроводности на практике
- Как определить теплопотери
- Как рассчитать толщину стен
- Расчет толщины стены, толщины утеплителя, отделочных слоев
- Пример расчета толщины утеплителя
Что такое теплопроводность
Теплопроводность кирпичной стены: без утеплителя; с утеплителем снаружи; с утеплителем внутри дома;
Если говорить простыми словами, то теплопроводность – это передача тепла от более горячего тела к менее горячему. Если не углубляться в подробности, то все физические материалы и вещества могут передавать тепловую энергию.
Ежедневно, даже на самом примитивном бытовом уровне мы сталкиваемся с теплопроводностью, которая проявляется у каждого материала по-разному и в очень отличающейся степени. Для примера, если мешать кипящую воду металлической ложкой – можно очень скоро получить ожег, так как ложка нагреется почти моментально. Если же использовать деревянную лопатку, то нагреваться она будет очень медленно. Этот пример наглядно показывает разницу теплопроводности у металла и дерева – у металла она в разы выше.
Коэффициент теплопроводности
Для оценки теплопроводности любого материала используется коэффициент теплопроводности (?), который измеряется в Вт/(мx°C) или Вт/(мxК). Этот коэффициент обозначает количество тепла, которое может провести любой материал, не зависимо от своего размера, за единицу времени на определённое расстояние. Если мы видим, что какой-то материал имеет большое значение коэффициента, то он очень хорошо проводит тепло и его можно использовать в роли обогревателей, радиаторов, конвекторов. К примеру, металлические радиаторы отопления в помещениях работают очень эффективно, отлично передавая нагрев от теплоносителя внутренним воздушным массам в помещении.
Если же говорить о материалах, используемых при строительстве стен, перегородок, крыши, то высокая теплопроводность – явление нежелательное. При высоком коэффициенте здание теряет слишком много тепла, для сохранения которого внутри помещения нужно будет сооружать довольно толстые конструкции. А это влечет за собой дополнительные финансовые затраты.
Коэффициент теплопроводности зависит от температуры. По этой причине в справочной литературе указывается несколько значений коэффициента, которые изменяются при увеличении температур. На проводимость тепла влияют и условия эксплуатации. В первую очередь речь идет о влажности, так как при увеличении процента влаги коэффициент теплопроводности также возрастает. Поэтому проводя такого рода расчеты нужно знать реальные климатические условия, в которых здание будет построено.
Таблица теплопроводности материалов
Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.
Материал | Коэфф. тепл. Вт/(м2*К) |
Алебастровые плиты | 0,470 |
Алюминий | 230,0 |
Асбест (шифер) | 0,350 |
Асбест волокнистый | 0,150 |
Асбестоцемент | 1,760 |
Асбоцементные плиты | 0,350 |
Асфальт | 0,720 |
Асфальт в полах | 0,800 |
Бакелит | 0,230 |
Бетон на каменном щебне | 1,300 |
Бетон на песке | 0,700 |
Бетон пористый | 1,400 |
Бетон сплошной | 1,750 |
Бетон термоизоляционный | 0,180 |
Битум | 0,470 |
Бумага | 0,140 |
Вата минеральная легкая | 0,045 |
Вата минеральная тяжелая | 0,055 |
Вата хлопковая | 0,055 |
Вермикулитовые листы | 0,100 |
Войлок шерстяной | 0,045 |
Гипс строительный | 0,350 |
Глинозем | 2,330 |
Гравий (наполнитель) | 0,930 |
Гранит, базальт | 3,500 |
Грунт 10% воды | 1,750 |
Грунт 20% воды | 2,100 |
Грунт песчаный | 1,160 |
Грунт сухой | 0,400 |
Грунт утрамбованный | 1,050 |
Гудрон | 0,300 |
Древесина — доски | 0,150 |
Древесина — фанера | 0,150 |
Древесина твердых пород | 0,200 |
Древесно-стружечная плита ДСП | 0,200 |
Дюралюминий | 160,0 |
Железобетон | 1,700 |
Зола древесная | 0,150 |
Известняк | 1,700 |
Известь-песок раствор | 0,870 |
Ипорка (вспененная смола) | 0,038 |
Камень | 1,400 |
Картон строительный многослойный | 0,130 |
Каучук вспененный | 0,030 |
Каучук натуральный | 0,042 |
Каучук фторированный | 0,055 |
Керамзитобетон | 0,200 |
Кирпич кремнеземный | 0,150 |
Кирпич пустотелый | 0,440 |
Кирпич силикатный | 0,810 |
Кирпич сплошной | 0,670 |
Кирпич шлаковый | 0,580 |
Кремнезистые плиты | 0,070 |
Латунь | 110,0 |
Лед 0°С | 2,210 |
Лед -20°С | 2,440 |
Липа, береза, клен, дуб (15% влажности) | 0,150 |
Медь | 380,0 |
Мипора | 0,085 |
Опилки — засыпка | 0,095 |
Опилки древесные сухие | 0,065 |
ПВХ | 0,190 |
Пенобетон | 0,300 |
Пенопласт ПС-1 | 0,037 |
Пенопласт ПС-4 | 0,040 |
Пенопласт ПХВ-1 | 0,050 |
Пенопласт резопен ФРП | 0,045 |
Пенополистирол ПС-Б | 0,040 |
Пенополистирол ПС-БС | 0,040 |
Пенополиуретановые листы | 0,035 |
Пенополиуретановые панели | 0,025 |
Пеностекло легкое | 0,060 |
Пеностекло тяжелое | 0,080 |
Пергамин | 0,170 |
Перлит | 0,050 |
Перлито-цементные плиты | 0,080 |
Песок 0% влажности | 0,330 |
Песок 10% влажности | 0,970 |
Песок 20% влажности | 1,330 |
Песчаник обожженный | 1,500 |
Плитка облицовочная | 1,050 |
Плитка термоизоляционная ПМТБ-2 | 0,036 |
Полистирол | 0,082 |
Поролон | 0,040 |
Портландцемент раствор | 0,470 |
Пробковая плита | 0,043 |
Пробковые листы легкие | 0,035 |
Пробковые листы тяжелые | 0,050 |
Резина | 0,150 |
Рубероид | 0,170 |
Сланец | 2,100 |
Снег | 1,500 |
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности) | 0,150 |
Сосна смолистая (600…750 кг/куб.м, 15% влажности) | 0,230 |
Сталь | 52,0 |
Стекло | 1,150 |
Стекловата | 0,050 |
Стекловолокно | 0,036 |
Стеклотекстолит | 0,300 |
Стружки — набивка | 0,120 |
Тефлон | 0,250 |
Толь бумажный | 0,230 |
Цементные плиты | 1,920 |
Цемент-песок раствор | 1,200 |
Чугун | 56,0 |
Шлак гранулированный | 0,150 |
Шлак котельный | 0,290 |
Шлакобетон | 0,600 |
Штукатурка сухая | 0,210 |
Штукатурка цементная | 0,900 |
Эбонит | 0,160 |
Таблица теплопроводности теплоизоляционных материалов
Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.
Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций
При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.
Наименование материалаКоэффициент теплопроводности Вт/(м·°C)
В сухом состоянии | При нормальной влажности | При повышенной влажности | |
Войлок шерстяной | 0,036-0,041 | 0,038-0,044 | 0,044-0,050 |
Каменная минеральная вата 25-50 кг/м3 | 0,036 | 0,042 | 0,,045 |
Каменная минеральная вата 40-60 кг/м3 | 0,035 | 0,041 | 0,044 |
Каменная минеральная вата 80-125 кг/м3 | 0,036 | 0,042 | 0,045 |
Каменная минеральная вата 140-175 кг/м3 | 0,037 | 0,043 | 0,0456 |
Каменная минеральная вата 180 кг/м3 | 0,038 | 0,045 | 0,048 |
Стекловата 15 кг/м3 | 0,046 | 0,049 | 0,055 |
Стекловата 17 кг/м3 | 0,044 | 0,047 | 0,053 |
Стекловата 20 кг/м3 | 0,04 | 0,043 | 0,048 |
Стекловата 30 кг/м3 | 0,04 | 0,042 | 0,046 |
Стекловата 35 кг/м3 | 0,039 | 0,041 | 0,046 |
Стекловата 45 кг/м3 | 0,039 | 0,041 | 0,045 |
Стекловата 60 кг/м3 | 0,038 | 0,040 | 0,045 |
Стекловата 75 кг/м3 | 0,04 | 0,042 | 0,047 |
Стекловата 85 кг/м3 | 0,044 | 0,046 | 0,050 |
Пенополистирол (пенопласт, ППС) | 0,036-0,041 | 0,038-0,044 | 0,044-0,050 |
Экструдированный пенополистирол (ЭППС, XPS) | 0,029 | 0,030 | 0,031 |
Пенобетон, газобетон на цементном растворе, 600 кг/м3 | 0,14 | 0,22 | 0,26 |
Пенобетон, газобетон на цементном растворе, 400 кг/м3 | 0,11 | 0,14 | 0,15 |
Пенобетон, газобетон на известковом растворе, 600 кг/м3 | 0,15 | 0,28 | 0,34 |
Пенобетон, газобетон на известковом растворе, 400 кг/м3 | 0,13 | 0,22 | 0,28 |
Пеностекло, крошка, 100 — 150 кг/м3 | 0,043-0,06 | ||
Пеностекло, крошка, 151 — 200 кг/м3 | 0,06-0,063 | ||
Пеностекло, крошка, 201 — 250 кг/м3 | 0,066-0,073 | ||
Пеностекло, крошка, 251 — 400 кг/м3 | 0,085-0,1 | ||
Пеноблок 100 — 120 кг/м3 | 0,043-0,045 | ||
Пеноблок 121- 170 кг/м3 | 0,05-0,062 | ||
Пеноблок 171 — 220 кг/м3 | 0,057-0,063 | ||
Пеноблок 221 — 270 кг/м3 | 0,073 | ||
Эковата | 0,037-0,042 | ||
Пенополиуретан (ППУ) 40 кг/м3 | 0,029 | 0,031 | 0,05 |
Пенополиуретан (ППУ) 60 кг/м3 | 0,035 | 0,036 | 0,041 |
Пенополиуретан (ППУ) 80 кг/м3 | 0,041 | 0,042 | 0,04 |
Пенополиэтилен сшитый | 0,031-0,038 | ||
Вакуум | 0 | ||
Воздух +27°C. 1 атм | 0,026 | ||
Ксенон | 0,0057 | ||
Аргон | 0,0177 | ||
Аэрогель (Aspen aerogels) | 0,014-0,021 | ||
Шлаковата | 0,05 | ||
Вермикулит | 0,064-0,074 | ||
Вспененный каучук | 0,033 | ||
Пробка листы 220 кг/м3 | 0,035 | ||
Пробка листы 260 кг/м3 | 0,05 | ||
Базальтовые маты, холсты | 0,03-0,04 | ||
Пакля | 0,05 | ||
Перлит, 200 кг/м3 | 0,05 | ||
Перлит вспученный, 100 кг/м3 | 0,06 | ||
Плиты льняные изоляционные, 250 кг/м3 | 0,054 | ||
Полистиролбетон, 150-500 кг/м3 | 0,052-0,145 | ||
Пробка гранулированная, 45 кг/м3 | 0,038 | ||
Пробка минеральная на битумной основе, 270-350 кг/м3 | 0,076-0,096 | ||
Пробковое покрытие для пола, 540 кг/м3 | 0,078 | ||
Пробка техническая, 50 кг/м3 | 0,037 |
Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.
Коэффициент теплопроводности для металлов и неметаллических твердых материалов
Все металлы без исключения являются хорошими проводниками тепла, за перенос которого в них отвечает электронный газ. В свою очередь ионные и ковалентные материалы, а также материалы, имеющие волокнистую структуру, являются хорошими теплоизоляторами, то есть плохо проводят тепло. Для полноты раскрытия вопроса о том, что такое теплопроводность, следует заметить, что этот процесс требует обязательного наличия вещества, если он осуществляется за счет конвекции или проводимости, поэтому в вакууме тепло может передаваться только за счет электромагнитного излучения.
В списке ниже приведены значения коэффициентов теплопроводности для некоторых металлов и неметаллов в Дж/(с*м*К):
- сталь — 47-58 в зависимости от марки стали;
- алюминий — 209,3;
- бронза — 116-186;
- цинк — 106-140 в зависимости от чистоты;
- медь — 372,1-385,2;
- латунь — 81-116;
- золото — 308,2;
- серебро — 406,1-418,7;
- каучук — 0,04-0,30;
- стекловолокно — 0,03-0,07;
- кирпич — 0,80;
- дерево — 0,13;
- стекло — 0,6-1,0.
Таким образом, теплопроводность металлов на 2-3 порядка превышает значения теплопроводности для изоляторов, которые являются ярким примером ответа на вопрос о том, что такое низкая теплопроводность.
Значение теплопроводности играет важную роль во многих индустриальных процессах. В одних процессах стремятся увеличить ее, используя хорошие теплопроводники и увеличивая площадь контакта, в других же стараются уменьшить теплопроводность, уменьшая площадь контакта и применяя теплоизолирующие материалы.
Таблица теплопроводности дерева
Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м•С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.
Проводимость тепла дерева
Прочность разных пород древесины
От чего зависит теплопроводность?
Итак, как мы уже убедились, коэффициент теплопроводности ? (лямбда) характеризует интенсивность теплопередачи через конкретный материал.
Так, например, наиболее теплопроводными являются металлы, а самыми слабыми — газы. Еще все проводники электричества, такие как медь, алюминий, золото или серебро, также хорошо пропускают через себя тепло, в то время как электрические изоляторы (дерево, пластик, резина) наоборот задерживают его.
Что может повлиять на этот показатель, кроме самого материала? Например, температура. Теплопроводность изоляционных материалов увеличивается с повышением температуры, а у металлов — напротив, уменьшается. Еще может повлиять наличие примесей. Сплавы разнородных металлов обычно имеют более низкую теплопроводность, чем их легирующие элементы.
В целом, теплопроводность веществ зависит, в основном, от их структуры, пористости, и прежде всего от их плотности. Поэтому, если производитель заявляет о низком значении лямбда при низкой плотности материала, — эта информация, как правило, не имеет ничего общего с действительностью и просто рекламный ход.
Влияние влаги на теплопроводность стройматериала
Опять же судя по примерам использования стройматериалов на практике, выясняется негативное влияние влаги на КТП стройматериала. Замечено – чем большему увлажнению подвергается стройматериал, тем более высоким становится значение КТП.
Различными способами стремятся защитить от воздействия влаги материал, используемый в строительстве. Эта мера вполне оправдана, учитывая повышение коэффициента для мокрого стройматериала
Обосновать такой момент несложно. Воздействие влаги на структуру строительного материала сопровождается увлажнением воздуха в порах и частичным замещением воздушной среды.
Учитывая, что параметр коэффициента теплопроводности для воды составляет 0,58 Вт/м°C, становится понятным существенное повышение КТП материала.
Следует также отметить более негативный эффект, когда вода, попадающая в пористую структуру, дополнительно замораживается – превращается в лёд.
Соответственно, несложно просчитать ещё большее увеличение теплопроводности, принимая во внимание параметры КТП льда, равного значению 2,3 Вт/м°C. Прирост примерно в четыре раза к параметру теплопроводности воды.
Одной из причин отказа от зимнего строительства в пользу стройки летом следует считать именно фактор возможного подмораживания некоторых видов стройматериалов и как следствие – повышения теплопроводности
Отсюда становятся очевидными строительные требования относительно защиты изоляционных стройматериалов от попадания влаги. Ведь уровень теплопроводности растёт в прямой пропорциональности от количественной влажности.
Не менее значимым видится и другой момент – обратный, когда структура строительного материала подвергается существенному нагреву. Чрезмерно высокая температура также провоцирует рост теплопроводности.
Происходит такое по причине повышения кинематической энергии молекул, составляющих структурную основу стройматериала.
Правда, существует класс материалов, структура которых, напротив, приобретает лучшие свойства теплопроводности в режиме сильного нагрева. Одним из таких материалов является металл.
Если под сильным нагревом большая часть широко распространенных стройматериалов изменяет теплопроводность в сторону увеличения, сильный нагрев металла приводит к обратному эффекту – КТП металла понижается
Стройматериалы с минимальным КТП
Согласно исследованиям, минимальным значением теплопроводности (около 0,023 Вт/м°C) обладает сухой воздух.
С точки зрения применения сухого воздуха в структуре строительного материала, необходима конструкция, где сухой воздух пребывает внутри замкнутых многочисленных пространств небольшого объёма. Конструктивно такая конфигурация представлена в образе многочисленных пор внутри структуры.
Отсюда логичный вывод: малым уровнем КТП должен обладать стройматериал, внутренняя структура которого представляет собой пористое образование.
Причём, в зависимости от максимально допустимой пористости материала, значение теплопроводности приближается к значению КТП сухого воздуха.
Созданию строительного материала с минимальной теплопроводностью способствует пористая структура. Чем больше содержится пор разного объема в структуре материала, тем лучший КТП допустимо получить
В современном производстве применяются несколько технологий для получения пористости строительного материала.
В частности, используются технологии:
- пенообразования;
- газообразования;
- водозатворения;
- вспучивания;
- внедрения добавок;
- создания волоконных каркасов.
Следует отметить: коэффициент теплопроводности напрямую связан с такими свойствами, как плотность, теплоемкость, температурная проводимость.
Значение теплопроводности может быть рассчитано по формуле:
? = Q / S *(T1-T2)*t,
Где:
- Q – количество тепла;
- S – толщина материала;
- T1, T2 – температура с двух сторон материала;
- t – время.
Средняя величина плотности и теплопроводности обратно пропорциональна величине пористости. Поэтому, исходя из плотности структуры стройматериала, зависимость от нее теплопроводности можно рассчитать так:
? = 1,16 ? 0,0196+0,22d2 – 0,16,
Где: d – значение плотности. Это формула В.П. Некрасова, демонстрирующая влияние плотности конкретного материала на значение его КТП.
Применение показателя теплопроводности на практике
В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.
Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым
Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см.
Нужно знать! У теплоизоляционных материалов значения показателя теплопроводности минимальны.
Как определить теплопотери
Главные элементы здания, через которые уходит тепло:
- двери (5-20%);
- пол (10-20%);
- крыша (15-25%);
- стены (15-35%);
- окна (5-15%).
Уровень теплопотери определяется с помощью тепловизора. О самых трудных участках говорит красный цвет, о меньших потерях тепла скажет желтый и зеленый. Зоны, где потери наименьшие, выделяются синим. Значение теплопроводности определяется в лабораторных условиях, и материалу выдается сертификат качества.
Значение проводимости тепла зависит от таких параметров:
- Пористость. Поры говорят о неоднородности структуры. Когда через них проходит тепло, охлаждение будет минимальным.
- Влажность. Высокий уровень влажности провоцирует вытеснение сухого воздуха капельками жидкости из пор, из-за чего значение увеличивается многократно.
- Плотность. Большая плотность способствует более активному взаимодействию частиц. В итоге теплообмен и уравновешивание температур протекает быстрее.
Как рассчитать толщину стен
Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.
Термическое сопротивление ограждающих конструкций для регионов России
Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.
Расчет толщины стены, толщины утеплителя, отделочных слоев
Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:
Формула расчета теплового сопротивления
R — термическое сопротивление;
p — толщина слоя в метрах;
k — коэффициент теплопроводности.
Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.
Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.
Пример расчета толщины утеплителя
Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.
- Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5 кирпича.
- Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.Рассчитывать придется все ограждающие конструкции
- Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.
Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными
Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание
Встречи на вашей, либо нейтральной территории, дешёвые путаны Магнитогорск, отдых для души и тела - redmagnitogorsk.ru. Самым оптимальным вариантом для одиноких мужчин является покупной секс с красивой проституткой с города Магнитогорска. Лучшие в городе дешёвые путаны Магнитогорск, пылкие и страстные, они такие грациозные и чуткие, что тебе обязательно повезёт. Окунись в удовольствие.